Estimating the Szeged index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Normalized Revised Szeged Index

In chemical graph theory, many graph parameters, or topological indices, were proposed as estimators of molecular structural properties. Often several variants of an index are considered. The aim is to extend the original concept to larger families of graphs than initially considered, or to make it more precise and discriminant, or yet to make its range of values similar to that of another inde...

متن کامل

Weighted Szeged Index of Graphs

The weighted Szeged index of a connected graph G is defined as Szw(G) = ∑ e=uv∈E(G) ( dG(u) + dG(v) ) nu (e)n G v (e), where n G u (e) is the number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. In this paper, we have obtained the weighted Szeged index Szw(G) of the splice graph S(G1, G2, y, z) and link graph L(G1, G2, y, z).

متن کامل

Wiener index versus Szeged index in networks

Let (G,w) be a network, that is, a graph G = (V (G), E(G)) together with the weight function w : E(G) → R. The Szeged index Sz(G,w) of the network (G,w) is introduced and proved that Sz(G,w) ≥ W (G,w) holds for any connected network where W (G,w) is the Wiener index of (G,w). Moreover, equality holds if and only if (G,w) is a block network in which w is constant on each of its blocks. Analogous...

متن کامل

The vertex PI index and Szeged index of bridge graphs

Recently the vertex Padmakar–Ivan (PI v) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper the vertex PI index and Szeged index of bridge graphs are determined. Using these formulas, the vertex PI indices and Szeged indices of several graphs are computed.

متن کامل

Revised Szeged Index of Product Graphs

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2009

ISSN: 0893-9659

DOI: 10.1016/j.aml.2009.06.001